3097: Hash Killer I
Time Limit: 5 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 963 Solved: 364[][][] Description
这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串。 子串的定义是S[l]、S[l + 1]、... S[r]这样连续的一段。 两个字符串被认为是不同的当且仅当某个位置上的字符不同。
VFleaKing一看觉得这不是Hash的裸题么!于是果断写了哈希 + 排序。 而hzhwcmhf神犇心里自然知道,这题就是后缀数组的height中 < L的个数 + 1,就是后缀自动机上代表的长度区间包含L的结点个数,就是后缀树深度为L的结点的数量。 但是hzhwcmhf神犇看了看VFleaKing的做法表示非常汗。于是想卡掉他。
VFleaKing使用的是字典序哈希,其代码大致如下: u64 val = 0; for (int i = 0; i < l; i++) val = val * base + s[i] - 'a'; u64是无符号int64,范围是[0, 2^64)。VFleaKing让val自然溢出。 base是一个常量,VFleaKing会根据心情决定其值。 VFleaKing还求出来了base ^ l,即base的l次方,这样就能方便地求出所有长度为L的子串的哈希值。 然后VFleaKing给哈希值排序,去重,求出有多少个不同的哈希值,把这个数作为结果。 其算法的C++代码如下:
typedef unsigned long long u64;
const int MaxN = 100000;
inline int hash_handle(const char *s, const int &n, const int &l, const int &base) { u64 hash_pow_l = 1; for (int i = 1; i <= l; i++) hash_pow_l *= base;
int li_n = 0; static u64 li[MaxN];
u64 val = 0; for (int i = 0; i < l; i++) val = val * base + s[i] - 'a'; li[li_n++] = val; for (int i = l; i < n; i++) { val = val * base + s[i] - 'a'; val -= (s[i - l] - 'a') * hash_pow_l; li[li_n++] = val; }
sort(li, li + li_n); li_n = unique(li, li + li_n) - li; return li_n; }
hzhwcmhf当然知道怎么卡啦!但是他想考考你。
Input
Output
你需要输出一组数据使得VFleaKing的代码WA掉。我们会使用Special Judge检查你的结果的正确性。 输出文件共两行。 第一行两个用空格隔开的数n、l。 第二行是一个长度为n的字符串。只能包含'a'~'z'。 需要保证1 <= n <= 10^5, 1 <= l <= n, 不符合以上格式会WA。 不要有多余字符,很可能导致你WA。
Sample Input
Sample Output
8 4 buaabuaa (当然这个输出是会WA的) HINT
orz 波兰人 & fotile96 & sillycross
Source
题目链接:
分析:此题乍一眼看没怎么看懂,后来分析了一下,此题为构造题!
非常神奇的构造题。
首先明白两点:
1.卡hash的关键在于构造两个不同的串对应的hash值相同。
2.爆u64相当于对2^64这个数取模。
如果base是偶数,那么a.........aaa(>64个a)与ba.......aa(a的数量为前面那么串a的数量-1),这两个串长度相同,hash值相同,显然串是不同的,这样就卡掉了。
如果base是奇数,就比较麻烦了。
看vfk的做法吧:
strA . strB
代表字符串串联。如"娃" . "哈哈" = "娃哈哈" 设字符串序列{orzstr[i]},orzstr[1] = "a", orzstr[i] = orzstr[i - 1] . not(orzstr[i - 1])
hash(orzstr[i]) = hash(orzstr[i - 1]) * base ^ |not(orzstr[i - 1])| + hash(not(orzstr[i - 1]))
= hash(orzstr[i - 1]) * base ^ (2 ^ (i - 2)) + hash(not(orzstr[i - 1]))
hash(not(orzstr[i - 1])) * base ^ (2 ^ (i - 2)) + hash(orzstr[i - 1])
hash(orzstr[i]) - hash(not(orzstr[i])) = (hash(orzstr[i - 1]) - hash(not(orzstr[i - 1]))) * (base ^ (2 ^ (i - 2)) - 1) hash(not(orzstr[i]))似乎是个神奇的东西。而我们的目的实际上是要找两个字符串strA, strB使得
设数列{f[i]},f[i] =
hash(orzstr[i]) - hash(not(orzstr[i])) f[i] = f[i - 1] * (base ^ (2 ^ (i - 2)) - 1)
f[i] = f[i - 1] * g[i - 1]
问题是不是结束了呢……发现没有……这样的话我们要使2 ^ 64 \ f[i],至少得让i = 65……然后发现|orzstr[65]|是个天文数字。
base ^ (2 ^ (i - 1)) - 1 = (base ^ (2 ^ (i - 2)) - 1) * (base ^ (2 ^ (i - 2)) + 1) = g[i - 1] * 一个偶数
2 ^ (i * (i - 1) / 2) \ f[i]
这就是卡base为奇数时的方法。orzstr[12]和not(orzstr[12])即为所求。
而读入中base既有奇数又有偶数,直接在奇数构造的字符串后面加64个a就可以了。
下面给出AC代码:
1 #include 2 using namespace std; 3 int a[500001]; 4 int main() 5 { 6 int len=1; 7 a[1]=1; 8 int i; 9 while(len<=100000)10 {11 for(i=1;i<=len;i++)12 {13 if(a[i]==1)14 a[i+len]=0;15 else16 a[i+len]=1;17 }18 len=len*2;19 }20 printf("100000 10000\n");21 for(i=1;i<=100000;i++)22 {23 if(a[i]==1)24 printf("a");25 else26 printf("b");27 }28 printf("\n");29 return 0;30 }